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An asymptotic formula for the distribution function of the natural frequencies 
of a thin elastic shell is proved. The formula is used to determine the frequency 

density under different assumptions relative to the shell geometry. Density curves 

are presented. 

1. Pormulrtfon of the problem. Fundamentrl reeult,, Thedeter- 
mination of the frequencies of a thin elastic shell clamped at the boundary results in the 

following eigenvalue problem (see [ 11, p. 97, IJ], p. 297) : 
3 

x( 

h2 12 nij + l?ij 1 Uj = ?d.Li (i = 1, 2, 3) 
j=1 

(1-l) 

(1.2) 

Here Ui are components of the displacement vector of a point on the shell middle sur- 
face, lij and n+j are the differential operators 
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where ~ss is some self-adjoint second order operator whose explicit form is not needed 
later. For brevity of the exposition we assume 

Qj = 0 (1.4) 

for all the remaining values of i, j (see p], p.299). Here h is a small parameter, the 

relative shell thickness, in (1.1) - (1.3), o is the Poisson’s ratio, h =(I-- a”) p,!-L~a, 
where p is the density, E is the Young’s modulus, o is the vibration frequency , 

RI-’ (a, 0) and fia-’ (a, g) are the principa\ curvatures of the middle surface which 

is assumed sufficiently smooth. The middle surface is referred to the lines of curvature, 
and A (a, p) and M (a, 8) are coefficients of the first quadratic form 

t&s = A2da2 + B2df12, A (a, B), B (a, IV > a > 0 

The problem (1. I), (1.2) is self-adjoint and has a positive discrete spectrum. Let N(?L) 

denote the distribution function of the eigenvalues of this problem (br (h) equals the 
number of eigenvalues not exceeding a given A). The following assertion is proved below. 

Theorem. The asymptotic formula 

is valid for fixed h > 0 and h 3 0 . Here 

Q (0, CL, P) = (1 - o*) [J&l (a, p) sin* 0 + ]&‘(a, p) cos* 012 (l-6) 
o<e<22n, (a, 3) E g, 7 == const > 0 

and 6 is the domain of variation of the parameters,and the constant in the O-term is 
independent of 0 < A .< 3.,, (’ ). 

Note 1. It will be shown that (1.5) is conserved if any differential operators con- 
taining not more than two differentiations for i and j < 2 and not more than three 
differentiations for i =- ;j, j = 1. :! (j = 0, i ;_: 1, 2) under the single assump- 

tion that the problem (1.1) (1.2) remains self-adjoint, are taken as nij in (1.1). 
Note 2. It will be shown that (1.5) is valid for any boundary conditions for which 

the system (1.1) is self-adjoint, and the corresponding quadratic functional agrees with 
the quadratic functional of the problem (1. l), (1.2). 

Let us note that in the case of a shell whose principal curvatures are almost constant 
an expression for IV(b) agreeing with the inner integral in (1.7) was found by Bolotin [3] 
(see also [4], pp. 11, 13). In the case of a shell of revolution a formula for the density, 
analogous to (1.5), has recently been established by Tovstik [S] under certain added 
consuaints. The validity of (1.5) ir the case of a shell of revolution has been proved 
rigorously [S] in the whole frequency range and the remainder term has been estimated. 

l ) See Sects, 4, 6 below relative to the estimate of the remalndzr term in (1.5). 
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The validity of (1.5) in the case of an arbitrary shell has been proved in a development 
of [6f by the method of oyerlapp~ng cells f7f. Formula (1.5) is proved below by the 
Hilbert-Courant scheme [S]. The idea of cutoff functions is used to overcome the fun- 

damental difficulty, which is to prove the agreement between the’ asymptotics in the 

clamped and free cells case. The plan pointed out at the end of the Gol’denveizer pa- 
per ( [9], p. 914) realizes the theorem as a whole. A number of other results associated 
with the distribution of the natural frequencies is also presented. 

2, Estfmrtsr for the qurdtrttc functionrl, Henceforth,the notation 

(n, v) = SC u;AB da d/3 (24 
B’ 

is used for the scaIar product of two functions u (a, 6) and D (a, g) defined in a do- 
main g . 

If f = (uI, u2, ZZ~) and h = (VI, v2, 3 v ) are two vector functions, then 
3 

Let us introduce the quadratic functional of the problem (1.1). (I. 2) 

(2.2) 

We note that although the operator (P/12) N + L is elliptic, neither N nor L possess 

this property, This makes direct utilization of the results obtained in [lo, I.11 difficult. 
Let us prove the following proposition. 

Lemma 1. The inequality 

C,N/jaeu~il”+c,~Ji~u,ll’--c,/lI~~~J(I)~ 

is valid for a smooth vector-fiction f satisfying the conditions (1.2). Here 

Ci, C;* ‘i = 1, 2, 3) are positive constants independent of f and of the parameter 

h. The proof of the lemma is based on the following relationships, which will be used 
over and over again later: 
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The first formula (2.5) and all those presented below are valid for all sufficiently small 
a. The constants in the O-terms depend only on the coefficients of the system 

O[” i [Jdz@ + 8-l i IIUi 112] 
i=l i=l 

P-6) 

Formulas (2.5) - (2.7) and the first two formulas in (2.8) are proved by inte~at~on by 

parts taking account of the boundary conditions (1.2). The Cauchy-Buniakowski and 
Sobolev inequa&ties ( @.2], p. 119, [13], p. 96) are hence used 

P-9) 

We note also that the estimate 

follows from (2.6). Taking account of (2.10) and (2.2). formulas (2.5) - (2.8) result in 
the left inequality of (2.3). The right inequality of (2.3) is obvious. Lemma 1 is proved. 

By virtue of known theorems (see [12]. p. 83, [133, p. 295) it follows at once from (2.3) 
that the problem (1.1). (1.2) has a discrete spectrum. The positivity of the spectrum 
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results from the formula 

J(f) = \s AB [(Q + ~2)~ - 2 (1 - 6) ( el~2 - $)I da dp + 

; \s AB [(x, + +J2 - 2 (1 - o) (x,x2 - r2)] du d/ii 
‘&? 

(2.11) 

Here (see [Z], p. 299) 

81 = -Jj- au ’ “‘+A ?&a-RR;‘u, 

1 &Oz -- 
E2 = B &3 + & g u1 - R&, 

1 @us 1 an &fs 1 
xp=Aza,z--- 

c?A 8~s 
A3 &t 

- - _-- 
-%i- + AB2 t$3 i3p 

1 iPu3 I i3B aus X,ZT2d apz-- -- 
B3 ap ap + 

1 c?B hi3 --- 
A2B i3a act 

1 asus 1 aA au3 1 
I aB aus T=ABaclaP-_-~---_ 

A2B ap au AB* aa ap 

The right side of (2.11) differs from the shell strain potential energy by the factor 

l/s Eh (1 - 
Lemma 2:)-l The inequality (2.3) is valid for the functional (2.11) for any smooth 

vector function. 

It is sufficient to note for the proof that after removing the parentheses in (2.11) the 

functional J (f) is represented, for any f , as the sum of the right sides of (2.5). (2.6), 
(2.8) with the same O-terms. The exception is the inequality (2. lo), which we derive 
by integrating by parts in the second formula in (2.6) by relying on the first two bound- 
ary conditions in (1.2). However, this can be avoided if the following Korn type inequa- 
lity valid for all smooth u1 and ua is used: 

Here p and p’ are positive constants (see [14], p.183). 
Henceforth, wherever necessary, we write Js (f) and J, (f) depending on whether f 

satisfies the boundary conditions (1.2) or is an arbitrary smooth vector function in g. 

3. Clrmped, free rnd periodic problem in a square. Let us cover 
the domain g of variation of the parameters a, p with a square mesh with the side A. 
Then we obtain for the distribution function N (h) of the problem (1. l), (1.2) (by ana- 
logy with [8]) 
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x r&(3li) (h)< iv (h) < 2 &Ii) (h) 

(1) (i) 
Here n@ i) (a)’ denotes the distribution function of the eigenvalues of a problem of 

type (1. l), (1.2) in the cell Qj , while n( c* i) (a) is the distribution function for the free 
problem, which consists in seeking the sequence of minima of the functional (2.11) de- 

fined in Qj. Let us clarify that the free problem also has a discrete spectrum by virtue 

of Lemma 2. The fundamental difficulty consists in seeking the asymptotics for n(“*j’(h) 
and n(‘o i) (A) as h --t 0. This problem is solved as follows. 

Let Qj be a square with center at the point (aj, pj). Assuming the integrals in the 
right sides of (2.5). (2.6), (2.8) to be taken with respect to Qj, let us replace A, B, 
RI-l, R,-l in these integrals by their values at some boint (aj*, pj*) E Qj, we dis- 

card the O-terms, and denote by Jjo (f) h t e sum of the functionals which thus originate. 
Let us agree to write J,,j (f), J3,j0 (f) , etc. in the apparent notation. The following, 

assertion is valid. 
Lemma 3. For certain positive c and all sufficiently small A 

&.i (f) (1 - CA) < J,,j (f) < Ji,i (f) (1 + CA) (3.1) 
2 

& (f) (I - CA> - CA-l 2 (ui, ui) - Ch2A-3(u3, u3) < J,,j (f) < 
i=l (3.2) 

z 

J:,j (f)(l + CA) + CA-’ 2 (ui, ui) + Ch2A-3(~3, u3) 
i=l 

The estimates (3.1) and (3.2) are obtained if the coefficients B / A3, 2 / AB , etc. in 

the right sides of (2.5), (2. S), (2.8) are replaced by their Taylor series expansions, and 
e = A is set everywhere in the o-terms. In the case of a clamped shell the inequali- 

ties 
(n33= ~3, ~3) > CA_4 (~3, us), (lii”ui, ui) > CA+ (ui, ui), i = 1, 2 

should also be used. 
Now, besides the square Qj let us consider a square qi with the same center (aj, pj) 

and side A - 26 (Fig. 1). Let q1 (a, 0) and q2 (a, p) be two infinitely differentiable 
functions in Qf such that 

$I2 (a, B) + +: (a, B) = 1, (~9 P) E Qj (3.3) 

$2 (a, B) = 0 (a7 B) E 4j (3.4) 

where % (a, p) vanishes at some strip Qi near the boundary which is less than 6 i 3. 

wide. The functions $i (a, @) (i = 1, 2) can be chosen such that 

ak4+ 

I I aaklapk2 
6 f3-“, It = 1, 2, 3, r, (3.5) 

with a constant independent of 6, and A. The existence of such functions is proved by 
a standard method (see [15], p.11, for example). The following assertion later plays 
an essential part. 

Lemma 4. For any smooth vector function f = (aI, lc2, u3) with some C > 0 
and 

x = C&” t = Ch2iY4A-i 

the inequalities 
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are valid. We omit the subscript j here and henceforth below. 
The inequality (3.6) is established by direct substitution of the vector-functions f$l 

and jti in the functional J” (f). The identity 

Yj 
L (3.3). the estimate (3.5) and inequalities of 

the type (2.9) should hence be used. The 

inequality (3.7) is obtained from (3.6) by an 
obvious transformation taking account of the 

-6 _ 
A 

identity (3.3). 

(a.i,BJI We note that the J” (f) in the right sides 
in the inequalities (3.6) and (3.7) can be 

Yi 
replaced by J (f). This can be done because 

of the left inequality (3.2) taking account 

\ of the evident inequalities x > A-‘, T > 

Pj h2Am3. Let us agree to number the inequal- 

Fig. 1 
ities thus obtained (3.6’) and (2.7’). 

Now, let nc3) (h) be the distribution func- 
tion of the clamped problem on the square 

Qj and IL(~) (I) the distribution function of minima in the free problem. Let us agree 
to indicate the passage from the functional J (f) to J” (f) by a zero superscript; the 
bar on top denotes the passage to the functional considered on the borders yi, and the 

pair of subscripts (x, r) the component 

x [(u,, U,) + (u,, UJI + ‘t (fl f) 

added to the functional. 

The next thing is to obtain a lower bound for the distribution function nC3’ (a) , and 
an upper bound for the function n(V (A) in terms of the effectively calculated distribu- 
tion function &a) (A) of the periodic problem for the functional J” (f) in Qj. Let us 
prove a number of propositions. 

Lemma 5. For all h > 0 

nE$) [A (1 - CA)] - ii(‘~‘) [h (1 - CA)] < d3) (h) - (3.8) 

For the proof we substitute an arbitrary vector function f satisfying the periodicity con- 

dition on the sides of the square Qj into (3.6). The sequence of minima of the func- 

tional in the left side of (3.6) can be shifted only to the left if the pair of vector func- 
tions fql, f$2 is replaced by the pair fr, fi, respectively, where fr is the vector func- 
tion satisfying the boundary conditions (1.2), and arbitrary elsewhere, and fa is an arbi- 
trary smooth vector function in yj which equals zero identically for (a, fij E qj. It is 
hence naturally assumed that the normalization condition 

(flP fl) -1 C/2? f-L) = Uh, /$I) + (f92, fqq = 1 

is conserved. Then the inequality (3. ‘7) yields at once 
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n$f’ [h (1 - CA)] < ,@,*l (h) f $30) (A) t 

A lower bound of the type (3.8) hence follows for n @,O) (A) To complete the proof,.the . 
inequality n(s) (h) >, n(a~oJ [h (1 - CA)] resulting from the right inequality in (3.l)should 

be used. 
Lemma 6. For all h > 0 

n(‘)(h),(nl_“$, (h(l _1- CA)] + ii?$, [h(l + CA)] 

Repeating the reasoning presented in the proof of Lemma 5 in application to the inequal- 

ity (3.7’) (* ) and to an arbitrary function, we find 

n(” [h (1 -CA)] 4 ni21’_i (h) + ,$$@J, Q) f3.9) 
Since $n;PJ+ (h) > r~p;yf_~ (h) alway s, then the lemma is proved. 

The following rough upper bound is needed later for the distribution function n(“j (h) 

of the functional (2.11) defined in some domain g. 

Lemma 7. 
n(p) (h) < C (h + C& mesg + + I/hm= g (3.10) 

Here ,the constant c, is taken from the left inequality (2.3), and mes g is the area of 
the domain g. The proof follows directly from the inequality (2.3). The distribution 

function for ttie three free functionals on the left in (2.3) are known (see [8]. pp. 374, 
390, and also [ 111). The following estimate for the function ?J?:,“,‘,-~ _ (h) of the free 
problem on the borders Yj results from (3.10) (see (3.9)) 

Together with the estimate (3.11) Lemmas 5 and 6 reduce the question of the estimation 
of the distribution functions rzc3) (h) and n@) (h) to the estimation of the distribution 

function Jzr;“’ (A) of the periodic problem with constant coefficients in the square Qj. 
This problem is solved effectively in exponentials and as is shown below 

where 

and all the functions (a, B) are taken at the point (aj*, pj*). Let us estimate the 
function Q;O) (11). 

Because of the evident identity n$? (h) = n,., (n,9) (h -- z) it is possible to be limited 

to an estimate of the distribution function nX o W”) (a) of the following problem : 

‘) Let us recall that (3.7’) is obtained from (3.7) by replacing J”(f) by J(f) in the 
right side of (3.7). 
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- 

with periodic conditions on the sides of the square Q~. Here A, B, RI, RZ are values 
of the corresponding functions at the point (zj*, &*) E Qj. The system (3.14) is a La- 

grange-Euler system for the functional JX.B” (f). It can be shown that all the eigenvec- 
tar-functions of the problem (3.14) are 

f ii,, kt, s exp 

k,, k2 = 0, + 1, it 2,..., s = 1, 2, 3 

where fk,,k,,s are constant vectors and the corresponding eigenvalues kk,,ktlS are roots 
of the equation 

Here 
(3.15) 

It is easy to see that n$,@ equals the number of integer points (k,, kz) for which (3.15) 
has roots not exceeding a given k (each pair k,, h is considered as many times as it 
corresponds to eigenvalues). Let us substitute 

-&= rcos8, $Akl=rsijfj 

in (3-15) (cf [3, 63). Expanding Btilh., (h) in decreasing powers of 7, we obtain 

Dkrlcz (h) = n”F’” 4 d,, j (?L) {L*+ + -&y (x - hAjBjf2 p+” - (3.16) 

fl,, j (6, h) r4 -j- il,, ~ (0, h) rs + :I,, j (h) -: 0 

Here 

and A,,jt Atqi, Aa j are some uniformly bounded functions in 0, j and 0 -$ h < ho whose 
explicit form is not essential henceforth. Substituting F = p / p , we reduce (3.16) to 

(3.2 ‘7) 

Equation (3.17) has been studied in detail in [6] in connection with the frequency dis- 
tribution in shells of revolution. Repeating the reasoning, we find (see [6], formula{ 3,31)) 
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under the assumption that h belongs to the set of values of the function Q (0, a, p) (see 

(1.6) ) . If 1\. lies above this set. then the estimate of the accuracy in (3.18) is improved. 
We omit corresponding results here. 

4. PrOOf of the r#ymptotic formula. Using Lemmas 5 and 6 and the 
estimates (3.12) and (3. ll), we obtain after summing in the right and left sides of the 
inequality at the beginning of Sect. 3 

(4.1) 

Thesum of the principal terms in (3.12) yields the integral in (4.1) after substitution of 
1\. for h (1 & CA) + ‘t . The residuals originating here are included in the third and 

fourth O-terms in the right side of (4.1). It is hence assume that 

I (h) = \j (( Re (1\ - n (0, u, &“iej AB dx dP < + oc (4.2) 
” . 
K 0 

The first and second O-terms in (4.1) were obtained as a result of summing the O-terms 

from (3.12) over the inner squares. The fifth and sixth originated in the addition of the 
functions EC”, j) (A) in (3.11). The contributions of the cells near the boundary (3.10) 
estimate the seventh and eighth. Setting 6 = h’4 and A = h”m in (4. l), we arrive at 

formula (1.5) for y = l/s. If the integral 1 (h) diverges for given h, then reasoning 
analogously, we obtain the O-term in (1.5) with y = ‘ilo. The theorem from Sect. 1 

is proved. 

So rough an estimate of the reminder is associated with the generality of the problem 
and the specifics of the method. In fact, the order of the remainder term is substantially 

higher, however, this is proved successfully only in particular cases (see Sect. 6). 

Now, let us explain that if the assumption (1.4) is discarded and nij are replaced by 
operators described in Note 1, then (1.5) does not change. The fact is-that all the esti- 

mates in (2.5) - (2. 8) are retained under this substitution, and therefore, so is all the 
reasoninig. Formula (1.5) thereby turns out to be valid if we proceed from the relation- 
ships between the stresses and strains presented in [16], say, and write the self-adjoint 
system in displacements by eliminating the stresses and moments by means of the me- 

thod indicated in [l]. 
L&t us note that (1.5) is valid for the system (1.1) for any boundary conditions if only 

the quadratic functional of the problem agrees with the functional (2.11). The proof is 
retained completely. 

5. Density of dirtribution of the natural frequencies. Let us set 
h _ (1 - 02) E)I*:-‘& in (1.5), where (r) is a frequency parameter. Fixingo,andAo, 
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we consider the ratio (mean frequency density) 

AIV -= N(Q)-+A@--N(o,) 
AU A0 

Using (1.5) and the Lagrange formula, we obtain 

Under the assumption of the smallness of (Ao)-l 0 (hy) formula (5.1) naturally redu- 

ces to the consideration of the function 

If the integral (5.2) converges in the neighborhood of the point o,, , then the location of 
o* in the segment [a,,, o,, + A-d] is hardly essential, and the graph of the function 
(5.2) reliably characterizes the behavior of the density. The divergence of the integral 
1 (w,) understandably indicates an increase in the density in the neighborhood of wO, 

however, the uncertainty in the location of O* in this case makes quantitative estimates 
difficult. In connection with the above, we note that the integral (5.2) can diverge only 
in the following three cases 

a) RI’ (a,, PO) = RZ1 (a,, Pa) 

& (~a’ - @) IO = .-$ (K,r - Ril) I,, = 0 and 0;’ z +- R,' (a,, p,,) 

b) R, (a, p) SE coast in some neighborhood of the point (a,,, pa) and mo2 = 

(E / P) RI-’ (a,, pa); 

c) R, (a, fi) c const in some neighborhood of the point (cz~, PO) and o02 = 

(E / P) RI-~ (a,, Pa). 

To simplify the formulation we here consider RI1 (a, b) and Ril (a, p) to be analytic 
in the neighborhood of (at,, pa). 

We present graphs of the function I* (0) = 1 (0) / 2n under diverse assumptions 

relative to the shell geometry. The computations were carried out on a BESM-3M com- 
puter. The curves I* (w) are pictured in Fig. 2 for the case of a truncated circular 
cone with the meridian 

y=ztgo+ (j6-1/SSgr), jf/2-costr<.z<1/2 

(rotation is performed around the s-axis, generator is of unit length throughout). Curves 

1 - 3 correspond to values of the slope of the generator a = llgrr, '14 n, 3/8 n. Curve 

4 corresponds to a cylinder a = 0. The curves I* (0) corresponding to shells of 
revolution of negative Gaussian curvature are shown in Fig. 3 

y = 1 + a (1 - x2), O<:<l 

Curves I - 5 correspond to the values a = - 0.75, - 0.5, -0.25, - 0.1, 0. 
The curves I* (0) for shells of revolution of positive Gaussian curvature with the meri- 
dian 
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y = 0.25 + a (1 - x2), O<x<l 

are pictured in Fig. 4. Curves 1 - 4 correspond to the values a = 0, 0.1, 0.25, 

0.5. The curves 1 (w) are pictured in Fig. 5 for the hyperbolic paraboloid 

23 z=T_2T. 
b” 1 x2 -+ 32 < 1 

Curves I - 3 correspond to the values b2 = 3, 4, 5, a2 = ‘I, b2. It is assumed 
everywhere that CT = 0.3. Moreover,also p (1 - os) E-i = 1. Other values of p 

and R will evidently result in a change 

in scale along the axes. Points correspond- 1’ 

8 I’ 

8 

0 I 2 3 w 

Fig. 2 

u if w 

Fig. 4 

2 3 0 

Fig. 3 

Fig. 5 

ing to the ends of the segments of a set of values of the function fti (0, a, b) are 

noted on the graphs. Attention is turned to the influence of the limit spectrum of the 
membrane problem on the value of the density. 

In conclusion, let us note that as follows from (5.2), the curve I (w) can, in principle, 
have any number of extrema. Examples of this kind can be constructed for shellsof both 
positive and negative Gaussian curvature. 
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6, Certain remark@. 1”. In the case of shells of revolution (1.5) becomes 

where B (s) (U < s -< b) is the distance between a point on the shell and the axis of 

revolution, and s is the aiclength of the meridian. The reminder term in (6.1) is ob- 

tained in [6] with y == i/a if (4.2) is satisfied and with y I/(; without this assumption. 

This is also valid for the remainder term in the case of an arbitrary cylindrical shell. 

2”. Setting h = 0 in (1.1) and discarding the last two boundary conditions in. 

(1.2), we obtain the membrane problem (see [17]). 
As shown in [18], in the case of shells of revolution the set of values of the function 

$1 (e, s) (s E In, b], 6 E lo, Zn]) agrees with the limit spectra (see the definition in 
p9], p. 316) of the membrane problem to the accuracy of two isolated points. This cir- 
cumstance relates (6.1) to the Bohr. formula from quantum mechanics (see [ZO]), where 
a function whose values generate the continuous spectrum of the degenerate problem is 
also under the integral sign for the distribution function. Apparently the distribution 

function has such a form every time the spectrum of the degenerate operator contains 
continuous pieces. In this connection, let us mention the assumption that (1.5) hehaves 
stably with respect to the selection of the perturbing operator 1%‘. Complementing what 
has been mentioned in Sect. 4, it can be shown that it does not vary if arbitrary fourth 
order operators are taken as Ilij (i, i :< 2) with the sole constraint that the operator N 

be ~sitive-definite, 
The authors are grateful to A. L. Gol’denveizer for constant attention to the research 

and for useful discussions. 
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SOME DYNAMIC PROBLEMS OF THE THEORY OF ELASTICITY 

PMM VoI. 37, W4, 1973, pp. 618-639 
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On the basis of the functionally-invariant solutions of the wave equation, sugges- 

ted by Smirnov and Sobolev, we give a closed solution of a class of selfsimilar 
problems of the dynamical theory of elasticity. This class contains the following 

problems: (a) a half-plane, arbitrarily loaded at the boundary (including the 
case when the endpoints of the loaded segments move with arbitrary constant 
velocities); (b) the contact problem for the half-plane, when the ends of the 
contact areas are displaced with arbitrary constant velocities ; (c) a collection 
of arbitrarily loaded cuts along the same line, moving with constant velocities, 
the different endpoints of the cuts having, possibly, different velocities. The solu- 

tion of the indicated problems are reduced in the simplest cases to the Dirichlet 
problem or to the mixed Keldysh-Sedov problems of the theory of analytic func- 
tions of a complex variable. In principle, the procedure for finding the solution 


